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SHOT NOISE GENERATED BY A SEMI-MARKOV PROCESS

Woollcott Smith

In this note a model for shot noise generated by a semi~Markov process is
developed. The moments of the shot noise process are found, and some appli-
catlous of this model are briefly indicated.

SECTION 1: A General Shot Noise Model
Before developing the shot noise model, we introduce and define some no-
tation for semi-Markov processes, In semi-Markov processes, S-MP, as in
Markov processes, each jump is a regeneration point eliminating the influence
of past events. However, in the S-MP the distribution of times between
jumps is arbitrary, whereas in the Markov process the sojourn time in any
state 1s exponentially distributed, Let tn be the time of the n-th tran-
sition, n = 0,1,2,... . Throughout this paper, we let co = (, Let xn be
the value of the S-MP after the n-th traasition. The process Xn is a
homogeneous Markov chain. The S-MP, X(t), is completely defined by a set of
defective probability distributions, G

Gi (=) $1 and Gi (0) = 0.

13° iy 3
Gij(t) ig the probability that the sojourn time in state 1 has duration

$ ¢ and ends with a jump to state J,

G,,(t) = Pr(X

1 —tHSthn-i).

n+1-J 4 t:n+l

In this paper, we will assume that the S-MP, X(t), has a finite number of
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states 1, 1 =0,1,2,...,N, that

N
1 5,(6) = ] G (t)

y=0 1

is not a lattice distribution function, and that
=]
(2) ay, = J tdSi(t) < o,

Let P denote the one~step transition matrix for the embedded Markov chain
Xn, P = [Gij(m)]. We assume that the matrix P 1s irreducible and has the

stationary probability vector m = (ro,nl,...,uN),
(3) T = xP,
The shot noise process, Y(t), is then defined by
(4) Y(t) = YoOf(t-t' L, X, W)
0<t st n’ "n’ "o

where £(t,j,w) 18 a known function and {wn} is a sequence of independent

random variables with distribution function
(5) H(x) = Pr(wn S x).

The ghape of the n-th pulse which 1s initiated at time t, depends on the
state of the S-MP, X“, and the random variable wn. The model presented here
is a straightforward generalization of a shot noise process generated by a
renewal process investigated by Takfcs (1956).

We define the distribution function for the process Y(t),
Fj(t'y) - Pt‘(\'(t) s Yixo - j)n
and let

oy
(6) ¢, (t,w) = I e WX dx F. (%,x)
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denote its characteristic function. Let

$00
(7 P (t,0) = [ ei‘&’f(t’j:x.)

i dH(x)

denote the characteristic function of a single impulse.

THEOREM 1: The functions ¢i(t,w) satisfy the system of linear integral
equations
N (t N
(8) ¢, (t,w) = jZO IO Py(t-etiu) o (e=t!yh) dGy (e7 + 1 - jgo Gy4(e).

PROOF: Y(t) =0 4f t, >t and if t, <t then Y(t) 1s the sum of two

1 1
random variables, f(t—tl,wl) and Y(t-tl). If ¢i(t,wa,j) denotes the

characteristic function of the conditional distribution of Y(t), given that
the first transition occurs at time tl = x and 1s a transition to the state

j, then

®J(t*x,w)r (t-x,w) XSt

h
Oi(t,wlx,j) =

1 x> t.)
From this expregssion, we obtain the unconditional characteristic function

given in equation (8).

The general solution for this system of integral equations is not known;
however, one can obtain from (8) equations for the moments of the Y(t) pro-

cess which can be solved. Let

« - 2 o -
(9) Hn(t.j) E{Y (c){xo i}
and let
(10) Moo= Lim M (€i)) {

t +» @




denote the moments of the stationary process if it exists. Further let

(11) A (Es9) = EIE(e,5,W].

THEOREM 2: The first two moments of the Y(t) process are

t N

(12) M,(t;3) = J A (t-t',1i) dm,, (t")
1 0 120 1 31
and
t N
(13) M, (t53) = Jo 120 {znl(c-c ;i)Al(t-t 1) + A, (-t ,;)} dmji(t ),

provided that the integrals exist, where

- NN
(14) mg (€) nzl MOF
and G(“)ij is the n-fold convolution
N
() [ Y -D) \ .
G (¢) = } 6 (t-t') dG, (t").
ij 0 k=0 k3 ik

If as ¢t + tAl(t,i) + 0 and tAz(t,i) +0 for {«1,2,...,N, then

tne first and second moments of the stationary process are

o N
1
(15) M, = = J Y om, A (1) de
1 @ g {=0 i1
and
1 (8 )
(16) Mz - Jo 120 ni{ZNl(t;i)Al(c,i) + ‘z("i)f dt,

provided that the integrals exist, where

]
a = n,a,;
{=0 i

L5 and a, are defined in (2) and (3).
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g'.ff'Q PROOF: Differentiating (8) with respect to w and setting w = 0 and multi-
,g{ - Plying by -1 we obtain
;."( D ‘-‘ . i
3o : t N

S ) an M. (t;3) = Z (A (t=t7 k)M, (e~t";k)) dG (t', 3 =0,1,2,..,N.

g 1 0 ki 1 1 3k

This system of Volterra integral equations (Tricomi (1957) p. 40) has a solu~-

A tion given by (12). One obtains the equations for the second moments by dif-

. ferentiating (8) twice with respect to w and solving the corresponding system
i:' ¢¥_ﬁ of integral equations,

To show that (15) holds, we first write

t/2 N
(18) Lim Ml(t;j) =  Lim { Z Al(t—t',i) dmji(t')
t > t+x/Q i=0
t N
+ Lim [ ) A (e=t?, 1) dm,, (£1).
t+ o /t/2 {=0

A well-known result for Markov renewal processes, Pyke (1861), states that

nih
(19) Lim (mji(t+h)-mji(t)) =

t > ®

s

Under the conditions of Theorem 2, the first integral on the right-hand side

of (18) goes to 0 as ¢t + ®y and using the result given in (19) as t + =»

the second term goes to (15). The proof for the second wmoment follows by the

sama general grgument.

The first moments for the stationary process are obtained directly from

equation (12). However, to obtain an e

xplicit golution for the second moment
NZ’ we will consider the special case

(20)

&
L ;

f(e,j,w) = wajexp(-yjt).

-

. BT e e 2

If E(W] = 4 <o ang Var([W] = 02 < @ then

(21) Al(t,j) - uajexp(-yjt)




L, - N

and
2 2 2
(22) kz(t,j) = (p"+0%) ay exp(-2yjc).

The exponential form of Al and Az enables us to take advantage of the re-
lationship between the convolution operator and the Laplace-Stieltjes trans-

forms. Let G*i (s) and m (8) denote the Laplace-Stieltjes transform of

3
(t) respectively., It can be shown (Pyke (1961)) that

3

Gi (t) and m

3 J
@3 M) = G [1-6*(e)]) 7
where M* and G* are N by N matrices whose ij~-th element is m*ij and
G*ij respectively. For the special case that we are considering, the Laplace
transform of (12) is
(24) M (s53) = u g —fi—-m* (s)

i =g Y418 i

Making use of the exponential form of Al’ equation (16) becomes
o 1 ¥ ' azi(u2+02)

25) My = = 120 ui{ZuaiM*l(yi,i) + T}

Equations (25), (24) and (23) then give a straightforward, if somewhat cumber-
some, method for computing the variance of this stationary process.

In the interest of brevity, we have not discussed other properties of the
Y(t) process that can be obtained by similar arguments. For instance, one
can obtain from (8) equations for all the moments of the Y(t) process. The
covariance function of the Y(t) process can be found directly from the re-
sults given here by defining a nes process Z(t) = Y(t) + Y(t+h). This pro-
cess is also a shot noilse process and the covariance of the Y(t) process

can be found from the variance of the Z(t) process, since

Cov(Y(t),Y(t+h)) = %[Var(z(C)) - Var(Y(t)) - var(Y(t+h))].




SECTION 2: Discussion

A shot necise process generated by a semi-Markov process can arise in many
situations where for various reasons one cannot consider the impulses to be
generated by a renewal process. One such situation is the modeling of traffic
noise generated by automobiles on a highway. This model has been described by
Marcus (1971).

In neurophysiology, the analysis of neural spike trains indicates that
the interspike times are often serially dependent random variables (Perkel,
Gerstein and Moore, 1967). Serial dependence can be simply introduced by
using S-MPs. Models for neuron firing proposed by Coleman and Gastwirth
(1969) lend to spike train processes that can be described by semi-Markov
processes (Smith, 1971).

Shot noise models can also be applied to queueing theory. Takdcs (1958) has
pointed out that the infinitely wany server queue i1s a speclal case of the
shot nolse process. In particular the S-MP/GI/® queue is a special case of
the mocel developed in this note where

1 {f 0stsw
f(e,L,w) = {
0 otherwise

and the random variable Nn represents the service time of the n-th individual.

For simplicity, we have discussed only the one-sided impulse function,
f(t,i,w) « 0 for t < 0, However, the two-sided impulse function can also be
analyzed using the same techniques. For ingtance in the two-sided case
equation (8) of Theorem ] becomes

N

(26) o (tyu) = I [0 Fyle-et,w) @

(t-t',w) dG , (t)
I=1

3 3

the integral equations for the one-sided impulse function is of course a

special case of this cquation. From (26) one can find integral equations for




the moments of the two-sided shot noilse process. For the two-sided process
the results in Theorem 2 are the same except that the upper limits of inte-
gration in equations (12) and (13) are infinity instead of t, and the lower
limits of equations (15) and (16) are (-») instead of 0., Marcus (1971)
ugsed this two-sided shot noise model to describe traffic noise near a highway.
He found the mean and variance of the stationary process by using different,
more heuristic methods.

In general, the usefulness of the shot noise process discussed in this
note is that complex stochastic systems can be represented in a model which can

be analyzed using straightforward mathematical techniques.
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